776net必赢官网
ENGLISH
|
bwin必赢主页
主页
bwin必赢概况
bwin必赢简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
退休职工
科学研究
研究中心
数苑博雅讲座
数苑经纬讲坛
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
数苑经纬讲坛
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
主页
>
科学研究
>
学术报告
> 正文
A Statistical Hypothesis Testing Framework for Data Misappropriation Detection in Large Language Models
发布时间:2025-06-18 作者: 浏览次数:
Speaker:
张林俊
DateTime:
6月20日(周五)上午10:00 - 11:00
Brief Introduction to Speaker:
张林俊教授,美国罗格斯大学
Place:
新文科楼403会议室
Abstract:
Large Language Models (LLMs) are rapidly gaining enormous popularity in recent years. However, the training of LLMs has raised significant privacy and legal concerns, particularly regarding the inclusion of copyrighted materials in their training data without proper attribution or licensing, which falls under the broader issue of data misappropriation. In this article, we focus on a specific problem of data misappropriation detection, namely, to determine whether a given LLM has incorporated data generated by another LLM. To address this issue, we propose embedding watermarks into the copyrighted training data and formulating the detection of data misappropriation as a hypothesis testing problem. We develop a general statistical testing framework, construct a pivotal statistic, determine the optimal rejection threshold, and explicitly control the type I and type II errors. Furthermore, we establish the asymptotic optimality properties of the proposed tests, and demonstrate its empir...
上一条:
信息论与编码理论
下一条:
人工智能与定理证明