科学研究
数苑经纬讲坛
当前位置: 主页 > 科学研究 > 数苑经纬讲坛 > 正文

数苑经纬讲坛(25):Uniqueness and nondegeneracy results for Lane-Emden type Dirichlet problems

发布时间:2025-09-09 作者: 浏览次数:

报告时间:2025年9月10日(周三)下午17:00-18:00

报告地点:国交2号楼201会议室

报告人:Isabella Ianni 罗马大学(Sapienza University of Rome)

摘要:We present uniqueness and nondegeneracy results for non-negative solutions of semilinear equations with a power nonlinearity, set in bounded domains with Dirichlet boundary conditions.

We start discussing the local case where, for the planar Lane-Emden problem, we can give a positive answer to a longstanding uniqueness conjecture in convex domains. Furthermore, in planar non-convex domains we can show a local uniqueness result.

Then we also consider a nonlocal fractional version of the problem, where new difficulties arise, and we are able to show uniqueness for least energy solutions in balls or in more general symmetric domains.